1 Introduction

Intuitively and effectively visualizing genetic mutation data can help researchers to better understand genomic data and validate findings. G3viz is an R package which provides an easy-to-use lollipop-diagram tool. It enables users to interactively visualize detailed translational effect of genetic mutations in RStudio or a web browser, without having to know any HTML5/JavaScript technologies.

The features of g3viz include

↥ back to top

2 Install g3viz

Install from R repository

# install package
install.packages("g3viz", repos = "http://cran.us.r-project.org")

or install development version from github

# Check if "devtools" installed
if("devtools" %in% rownames(installed.packages()) == FALSE){ 
  install.packages("devtools")
}

# install from github
devtools::install_github("g3viz/g3viz")

↥ back to top

3 Quick Start

# load g3viz package
library(g3viz)

3.1 Example 1: Visualize genetic mutation data from MAF file

Mutation Annotation Format (MAF) is a commonly-used tab-delimited text file for storing aggregated mutation information. It could be generated from VCF file using tools like vcf2maf. Translational effect of variant alleles in MAF files are usually in the column named Variant_Classification or Mutation_Type (i.e., Frame_Shift_Del, Split_Site). In this example, the somatic mutation data of the TCGA-BRCA study was originally downloaded from the GDC Data Portal.

# System file
maf.file <- system.file("extdata", "TCGA.BRCA.varscan.somatic.maf.gz", package = "g3viz")

# ============================================
# Read in MAF file
#   In addition to read data in, g3viz::readMAF function does
#     1. parse "Mutation_Class" information from the "Variant_Classification"
#        column (also named "Mutation_Type" in some files)
#     2. parse "AA_position" (amino-acid position) from the "HGVSp_Short" column 
#        (also named "amino_acid_change" in some files) (e.g., p.Q136P)
# ============================================
mutation.dat <- readMAF(maf.file)
# ============================================
# Chart 1
# "default" chart theme
# ============================================
chart.options <- g3Lollipop.theme(theme.name = "default",
                                  title.text = "PIK3CA gene (default theme)")

g3Lollipop(mutation.dat,
           gene.symbol = "PIK3CA",
           plot.options = chart.options,
           output.filename = "default_theme")
#> Factor is set to Mutation_Class
#> legend title is set to Mutation_Class

↥ back to top

3.2 Example 2: visualize genetic mutation data from CSV or TSV file

In this example, we read genetic mutation data from CSV or TSV files, and visualize it using some customizable chart options. Note this is equivalent to dark chart theme.

# load data
mutation.csv <- system.file("extdata", "ccle.csv", package = "g3viz")

# ============================================
# read in data
#   "gene.symbol.col"    : column of gene symbol
#   "variant.class.col"  : column of variant class
#   "protein.change.col" : colum of protein change column
# ============================================
mutation.dat <- readMAF(mutation.csv,
                        gene.symbol.col = "Hugo_Symbol",
                        variant.class.col = "Variant_Classification",
                        protein.change.col = "amino_acid_change",
                        sep = ",")  # column-separator of csv file

# set up chart options
plot.options <- g3Lollipop.options(
  # Chart settings
  chart.width = 600,
  chart.type = "pie",
  chart.margin = list(left = 30, right = 20, top = 20, bottom = 30),
  chart.background = "#d3d3d3",
  transition.time = 300,
  # Lollipop track settings
  lollipop.track.height = 200,
  lollipop.track.background = "#d3d3d3",
  lollipop.pop.min.size = 1,
  lollipop.pop.max.size = 8,
  lollipop.pop.info.limit = 5.5,
  lollipop.pop.info.dy = "0.24em",
  lollipop.pop.info.color = "white",
  lollipop.line.color = "#a9A9A9",
  lollipop.line.width = 3,
  lollipop.circle.color = "#ffdead",
  lollipop.circle.width = 0.4,
  lollipop.label.ratio = 2,
  lollipop.label.min.font.size = 12,
  lollipop.color.scheme = "dark2",
  highlight.text.angle = 60,
  # Domain annotation track settings
  anno.height = 16,
  anno.margin = list(top = 0, bottom = 0),
  anno.background = "#d3d3d3",
  anno.bar.fill = "#a9a9a9",
  anno.bar.margin = list(top = 4, bottom = 4),
  domain.color.scheme = "pie5",
  domain.margin = list(top = 2, bottom = 2),
  domain.text.color = "white",
  domain.text.font = "italic 8px Serif",
  # Y-axis label
  y.axis.label = "# of TP53 gene mutations",
  axis.label.color = "#303030",
  axis.label.alignment = "end",
  axis.label.font = "italic 12px Serif",
  axis.label.dy = "-1.5em",
  y.axis.line.color = "#303030",
  y.axis.line.width = 0.5,
  y.axis.line.style = "line",
  y.max.range.ratio = 1.1,
  # Chart title settings
  title.color = "#303030",
  title.text = "TP53 gene (customized chart options)",
  title.font = "bold 12px monospace",
  title.alignment = "start",
  # Chart legend settings
  legend = TRUE,
  legend.margin = list(left=20, right = 0, top = 10, bottom = 5),
  legend.interactive = TRUE,
  legend.title = "Variant classification",
  # Brush selection tool
  brush = TRUE,
  brush.selection.background = "#F8F8FF",
  brush.selection.opacity = 0.3,
  brush.border.color = "#a9a9a9",
  brush.border.width = 1,
  brush.handler.color = "#303030",
  # tooltip and zoom
  tooltip = TRUE,
  zoom = TRUE
)

g3Lollipop(mutation.dat,
           gene.symbol = "TP53",
           protein.change.col = "amino_acid_change",
           btn.style = "blue", # blue-style chart download buttons
           plot.options = plot.options,
           output.filename = "customized_plot")
#> Factor is set to Mutation_Class

↥ back to top

3.3 Example 3: visualize genetic mutation data from cBioPortal

cBioPortal provides download for many cancer genomics data sets. g3viz has a convenient way to retrieve data directly from this portal.

In this example, we first retrieve genetic mutation data of TP53 gene for the msk_impact_2017 study, and then visualize the data using the built-in cbioportal theme, to mimic cBioPortal mutation_mapper.

# Retrieve mutation data of "msk_impact_2017" from cBioPortal
mutation.dat <- getMutationsFromCbioportal("msk_impact_2017", "TP53")
#> The Entrez Gene ID for TP53 is: 7157
#> Found mutation dataset for msk_impact_2017: msk_impact_2017_mutations

# "cbioportal" chart theme
plot.options <- g3Lollipop.theme(theme.name = "cbioportal",
                                 title.text = "TP53 gene (cbioportal theme)",
                                 y.axis.label = "# of TP53 Mutations")

g3Lollipop(mutation.dat,
           gene.symbol = "TP53",
           btn.style = "gray", # gray-style chart download buttons
           plot.options = plot.options,
           output.filename = "cbioportal_theme")
#> Factor is set to Mutation_Class
#> legend title is set to Mutation_Class

3.3.0.1 Note:

  • Internet access is required to download mutation data from cBioPortal. This may take more than 10 seconds; sometimes it may fail.
  • Check available studies on cBioPortal
  • R packages of cBioPortalData or cBioPortal are not stable recently. Therefore, we query the mutation data from cBioPortal directly using its API. This feature is subject to change in later versions.

↥ back to top

4 Usage

4.1 Read data

In g3viz, annotated mutation data can be loaded in three ways

  1. from MAF file, as in Example 1.

  2. from CSV or TSV files, as in Example 2.

  3. from cBioPortal (internet access required), as in Example 3.

↥ back to top

4.2 Map mutation type to mutation class

In addition to reading mutation data, readMAF or getMutationFromCbioportal functions also map mutation type to mutation class and generate a Mutation_Class column by default. Mutation type is usually in the column of Variant_Classification or Mutation_Type. The default mapping table is,

Mutation_Type Mutation_Class Short_Name
Inframe
In_Frame_Del Inframe IF del
In_Frame_Ins Inframe IF ins
Silent Inframe Silent
Targeted_Region Inframe IF
Missense
Missense_Mutation Missense Missense
Truncating
Frame_Shift Truncating FS
Frame_Shift_Del Truncating FS del
Frame_Shift_Ins Truncating FS ins
Nonsense_Mutation Truncating Nonsense
Nonstop_Mutation Truncating Nonstop
Splice_Region Truncating Splice
Splice_Site Truncating Splice
Other
3’Flank Other 3’Flank
3’UTR Other 3’UTR
5’Flank Other 5’Flank
5’UTR Other 5’UTR
De_novo_Start_InFrame Other de_novo_start_inframe
De_novo_Start_OutOfFrame Other de_novo_start_outofframe
Fusion Other Fusion
IGR Other IGR
Intron Other Intron
lincRNA Other lincRNA
RNA Other RNA
Start_Codon_Del Other Nonstart
Start_Codon_Ins Other start_codon_ins
Start_Codon_SNP Other Nonstart
Translation_Start_Site Other TSS
Unknown Other Unknown

↥ back to top

4.3 Retrieve Pfam domain inforamtion

Given a HUGO gene symbol, users can use either hgnc2pfam function to retrieve Pfam protein domain information first or all-in-one g3Lollipop function to directly create lollipop-diagram. In case that the given gene has multiple isoforms, hgnc2pfam returns all UniProt entries, and users can specify one using the corresponding UniProt entry. If attribute guess is TRUE, the Pfam domain information of the longest UniProt entry is returned.

# Example 1: TP53 has a single UniProt entry
hgnc2pfam("TP53", output.format = "list")
#> $symbol
#> [1] "TP53"
#> 
#> $uniprot
#> [1] "P04637"
#> 
#> $length
#> [1] 393
#> 
#> $pfam
#>      hmm.acc     hmm.name start end   type
#> 5350 PF08563      P53_TAD     6  30  Motif
#> 5349 PF18521         TAD2    35  59  Motif
#> 5351 PF00870          P53    99 289 Domain
#> 5348 PF07710 P53_tetramer   319 358  Motif

# Example 2: GNAS has multiple UniProt entries
#   `guess = TRUE`: the Pfam domain information of the longest 
#                   UniProt protein is returned
hgnc2pfam("GNAS", guess = TRUE)
#> GNAS maps to multiple UniProt entries: 
#>  symbol uniprot length
#>    GNAS  O95467    245
#>    GNAS  P63092    394
#>    GNAS  P84996    626
#>    GNAS  Q5JWF2   1037
#> Warning in hgnc2pfam("GNAS", guess = TRUE): Pick: Q5JWF2
#> {"symbol":"GNAS","uniprot":"Q5JWF2","length":1037,"pfam":[{"hmm.acc":"PF00503","hmm.name":"G-alpha","start":663,"end":1026,"type":"Domain"}]}

↥ back to top

4.4 Chart themes

The g3viz package contains 8 ready-to-use chart schemes: default, blue, simple, cbioportal, nature, nature2, ggplot2, and dark. Check this tutorial for examples and usage.

↥ back to top

4.5 Color schemes

Figure 1 demonstrates all color schemes that g3viz supports for lollipop-pops and Pfam domains.

{#color_scheme_fig1}
**Figure 1.** List of color schemes supported by `g3viz`

Figure 1. List of color schemes supported by g3viz

↥ back to top

4.6 Chart options

Chart options can be specified using g3Lollipop.options() function (see example 2). Here is the full list of chart options,

Chart options of g3viz
Option Description
Chart settings
chart.width chart width in px. Default 800.
chart.type pop type, pie or circle. Default pie.
chart.margin specify chart margin in list format. Default list(left = 40, right = 20, top = 15, bottom = 25).
chart.background chart background. Default transparent.
transition.time chart animation transition time in millisecond. Default 600.
Lollipop track settings
lollipop.track.height height of lollipop track. Default 420.
lollipop.track.background background of lollipop track. Default rgb(244,244,244).
lollipop.pop.min.size lollipop pop minimal size in px. Default 2.
lollipop.pop.max.size lollipop pop maximal size in px. Default 12.
lollipop.pop.info.limit threshold of lollipop pop size to show count information in middle of pop. Default 8.
lollipop.pop.info.color lollipop pop information text color. Default #EEE.
lollipop.pop.info.dy y-axis direction text adjustment of lollipop pop information. Default -0.35em.
lollipop.line.color lollipop line color. Default rgb(42,42,42).
lollipop.line.width lollipop line width. Default 0.5.
lollipop.circle.color lollipop circle border color. Default wheat.
lollipop.circle.width lollipop circle border width. Default 0.5.
lollipop.label.ratio lollipop click-out label font size to circle size ratio. Default 1.4.
lollipop.label.min.font.size lollipop click-out label minimal font size. Default 10.
lollipop.color.scheme color scheme to fill lollipop pops. Default accent. Check color schemes for details.
highlight.text.angle the rotation angle of on-click highlight text in degree. Default 90.
Domain annotation track settings
anno.height height of protein structure annotation track. Default 30.
anno.margin margin of protein structure annotation track. Default list(top = 4, bottom = 0).
anno.background background of protein structure annotation track. Default transparent.
anno.bar.fill background of protein bar in protein structure annotation track. Default #E5E3E1.
anno.bar.margin margin of protein bar in protein structure annotation track. Default list(top = 2, bottom = 2).
domain.color.scheme color scheme of protein domains. Default category10. Check color schemes for details.
domain.margin margin of protein domains. Default list(top = 0, bottom = 0).
domain.text.font domain label text font in shorthand format. Default normal 11px Arial.
domain.text.color domain label text color. Default #F2F2F2.
Y-axis settings
y.axis.label Y-axis label text. Default # of mutations.
axis.label.font css font style shorthand (font-style font-variant font-weight font-size/line-height font-family). Default normal 12px Arial.
axis.label.color axis label text color. Default #4f4f4f.
axis.label.alignment axis label text alignment (start/end/middle). Default middle
axis.label.dy text adjustment of axis label text. Default -2em.
y.axis.line.color color of y-axis in-chart lines (ticks). Default #c4c8ca.
y.axis.line.style style of y-axis in-chart lines (ticks), dash or line. Default dash.
y.axis.line.width width of y-axis in-chart lines (ticks). Default 1.
y.max.range.ratio ratio of y-axis range to data value range. Default 1.1.
Chart title settings
title.text title of chart. Default ““.
title.font font of chart title. Default normal 16px Arial.
title.color color of chart title. Default #424242.
title.alignment text alignment of chart title (start/middle/end). Default middle.
title.dy text adjustment of chart title. Default 0.35em.
Chart legend settings
legend if show legend. Default TRUE.
legend.margin legend margin in list format. Default list(left = 10, right = 0, top = 5, bottom = 5).
legend.interactive legend interactive mode. Default TRUE.
legend.title legend title. If NA, use factor name as factor.col. Default is NA.
Brush selection tool settings
brush if show brush. Default TRUE.
brush.selection.background background color of selection brush. Default #666.
brush.selection.opacity background opacity of selection brush. Default 0.2.
brush.border.color border color of selection brush. Default #969696.
brush.handler.color color of left and right handlers of selection brush. Default #333.
brush.border.width border width of selection brush. Default 1.
Tooltip and zoom tools
tooltip if show tooltip. Default TRUE.
zoom if enable zoom feature. Default TRUE.

↥ back to top

4.7 Save chart as HTML

g3Lollipop also renders two buttons over the lollipop-diagram, allowing to save the resulting chart in PNG or vector-based SVG file. To save chart programmatically as HTML, you can use htmlwidgets::saveWidget function.

chart <- g3Lollipop(mutation.dat,
                    gene.symbol = "TP53",
                    protein.change.col = "amino_acid_change",
                    plot.options = plot.options)
htmlwidgets::saveWidget(chart, "g3lollipop_chart.html")

↥ back to top

5 Session Info

sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS 14.6.1
#> 
#> Matrix products: default
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] stats4    stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] cBioPortalData_2.8.2        MultiAssayExperiment_1.22.0 SummarizedExperiment_1.26.1 Biobase_2.56.0             
#>  [5] GenomicRanges_1.48.0        GenomeInfoDb_1.32.4         IRanges_2.30.1              S4Vectors_0.34.0           
#>  [9] BiocGenerics_0.42.0         MatrixGenerics_1.8.1        matrixStats_1.3.0           AnVIL_1.8.7                
#> [13] dplyr_1.1.4                 kableExtra_1.4.0            knitr_1.48                  rmarkdown_2.28             
#> [17] g3viz_1.2.0                
#> 
#> loaded via a namespace (and not attached):
#>   [1] bitops_1.0-8              bit64_4.0.5               progress_1.2.3            filelock_1.0.3            httr_1.4.7               
#>   [6] GenomicDataCommons_1.20.3 bslib_0.8.0               tools_4.2.1               utf8_1.2.4                R6_2.5.1                 
#>  [11] DBI_1.2.3                 colorspace_2.1-1          prettyunits_1.2.0         tidyselect_1.2.1          TCGAutils_1.16.1         
#>  [16] bit_4.0.5                 curl_5.2.1                compiler_4.2.1            rvest_1.0.4               httr2_1.0.3              
#>  [21] cli_3.6.3                 formatR_1.14              xml2_1.3.6                DelayedArray_0.22.0       sass_0.4.9               
#>  [26] rtracklayer_1.56.1        scales_1.3.0              readr_2.1.5               rappdirs_0.3.3            rapiclient_0.1.6         
#>  [31] RCircos_1.2.2             Rsamtools_2.12.0          systemfonts_1.1.0         stringr_1.5.1             digest_0.6.37            
#>  [36] svglite_2.1.3             XVector_0.36.0            pkgconfig_2.0.3           htmltools_0.5.8.1         highr_0.11               
#>  [41] dbplyr_2.5.0              fastmap_1.2.0             limma_3.52.4              htmlwidgets_1.6.4         rlang_1.1.2              
#>  [46] rstudioapi_0.16.0         RSQLite_2.3.7             jquerylib_0.1.4           BiocIO_1.6.0              generics_0.1.3           
#>  [51] jsonlite_1.8.8            BiocParallel_1.30.4       RCurl_1.98-1.13           magrittr_2.0.3            GenomeInfoDbData_1.2.8   
#>  [56] futile.logger_1.4.3       Matrix_1.5-4.1            Rcpp_1.0.13               munsell_0.5.1             fansi_1.0.6              
#>  [61] lifecycle_1.0.4           yaml_2.3.10               stringi_1.8.4             RaggedExperiment_1.20.1   RJSONIO_1.3-1.9          
#>  [66] zlibbioc_1.42.0           org.Hs.eg.db_3.15.0       BiocFileCache_2.4.0       grid_4.2.1                blob_1.2.4               
#>  [71] parallel_4.2.1            crayon_1.5.3              lattice_0.22-6            Biostrings_2.64.1         splines_4.2.1            
#>  [76] GenomicFeatures_1.48.4    hms_1.1.3                 KEGGREST_1.36.3           pillar_1.9.0              rjson_0.2.21             
#>  [81] codetools_0.2-20          biomaRt_2.52.0            futile.options_1.0.1      XML_3.99-0.16             glue_1.7.0               
#>  [86] evaluate_0.24.0           lambda.r_1.2.4            data.table_1.15.4         tzdb_0.4.0                png_0.1-8                
#>  [91] vctrs_0.6.5               purrr_1.0.2               tidyr_1.3.1               cachem_1.1.0              xfun_0.47                
#>  [96] restfulr_0.0.15           survival_3.7-0            viridisLite_0.4.2         tibble_3.2.1              RTCGAToolbox_2.26.1      
#> [101] GenomicAlignments_1.32.1  AnnotationDbi_1.58.0      memoise_2.0.1

↥ back to top